Jawabanpaling sesuai dengan pertanyaan Tentukan koordinat kartesius dari koordinat kutub (-3,(4)/(6)pi). Jadikoordinat kartesius titik A (√3, 1) 2. Tentukan Koordinat kartesiusnya, jika koordinat kutubnya B (4,1200)! Jawab: B (4,1200) r = 4 y=r.Sin α=4.Sin 〖120〗^0=4.1/2 √3=2√3. α = 1200 x=r.Cos α=4.Cos 〖120〗^0=4.- 1/2= -2. Jadi koordinat kartesius titik B (- 2, 2√3 ) Koordinat Kartesius ⇒ Koordinat Kutub. Koordinatkartesius dan koordinat kutub dibedakan sesuai pengertiannya 2. Koordinat kartesius dikonversi ke koordinat kutub atau se- baliknya sesuai prosedur dan rumus yang berlak KARAKTER : Teliti dam cermat dalam menyelesaikan masalah trigonmetri KKM : 75 A. TUJUAN PEMBELAJARAN 1. Matematika- Koordinat Kartesius & Koordinat Kutub. 1. ※ KOORDINAT KARTESIUS & KOORDINAT KUTUB KOORDINAT KARTESIUS x A (x,y) Suatu titik A dapat dinyatakan sebagai pasangan berurut A (x,y) y X : jarak titik A terhadap sumbu -Y y : jarak titik A terhadap sumbu -X o Ingat (+x , +y) (-x, +y) !! o (-x , -y) (+x,+ y) 2. KoordinatCartesius titik P ( 6, 60 ∘) adalah . Koordinat kutub dari titik C ( 6 3, 6) adalah . Diketahui koordinat kutub titik A ( 4, 150 ∘), koordinat kartesiusnya adalah . Koordinat Cartesius dari titik ( 4 3, 300 ∘) adalah . Diketahui titik A ( 4, 120 ∘) dan B ( 8, 60 ∘). Panjang AB adalah . Ta n θ = y x = 3 √ 3 9 = 1 3 √ 3. Masih sering bingung dengan materi koordinat kutub. Contoh Soal Koordinat Kartesius Dan Koordinat Kutub Titik a berada di koordinat (1,0), ditulis dengan a(1,0). Materi koordinat kartesius dan koordinat kutub. Rumus koordinat kartesius dan kutub. Karena α sudut di Materimatematika wajib kelas 10. KOORDINAT KUTUB DAN KOORDINAT KARTESIUS. Sistem koordinat polar (sistem koordinat kutub) dalam matematika adalah suatu sistem koordinat 2-dimensi di mana setiap titik pada bidang ditentukan dengan jarak dari suatu titik yang telah ditetapkan dan suatu sudut dari suatu arah yang telah ditetapkan. MengkonversiKoordinat Kartesius ke Koordinat Kutub atau Sebaliknya • Jika pada koordinat kartesius titik P( x, y ) diketahui, maka koordinat kutub ( ) P r , θ o dapat ditentukan dengan menggunakan rumus sebagai berikut : r = x2 + y2 tan θ o = • y y ⇔ θ o = arctan x x ( Jika pada koordinat kutub titik P r , θ o ) diketahui, maka koordinat kartesius titik P( x, y ) dapat ditentukan dengan menggunakan rumus sebagai berikut : y ⇔ y = r. sin θ o r x cos θ o = ⇔ x = r. cos θ o r Hubungankoordinat kutub dan koordinat cartesius. Koordinat kutub merupakan koordinat yang ada pada cartesius yang terletak pada suatu lingkaran , sehingga koordinat kutub ditulis berdasarkan jari-jari lingkaran () dan sudut yang dibentuk terhadap sumbu X positif. Misalkan koordinat cartesius titik A adalah ( ), dan koordinat kutub titik A adalah ( matematikaitu mudah - kumpulan rumus matematika zzRNn. Masih sering bingung dengan materi koordinat kutub? Yuk, simak penjelasan lengkapnya lewat video yang ada di sini. Setelahnya, kamu juga bisa mengerjakan latihan soal yang telah disediakan untuk mengasah kemampuan sini, kamu akan belajar tentang Koordinat Kutub melalui video yang dibawakan oleh Bapak Anton Wardaya. Kamu akan diajak untuk memahami materi hingga metode menyelesaikan soal. Selain itu, kamu juga akan mendapatkan latihan soal interaktif dalam 3 tingkat kesulitan mudah, sedang, sukar. Tentunya menarik, bukan? Penjelasan yang didapatkan bisa dipraktikkan secara langsung. Sekarang, kamu bisa mulai belajar dengan 2 video dan 3 set latihan soal yang ada di halaman ini. Apabila materi ini berguna, bagikan ke teman atau rekan kamu supaya mereka juga mendapatkan manfaatnya. Kamu dapat download modul & contoh soal serta kumpulan latihan soal lengkap dalam bentuk pdf pada list dibawah ini Kumpulan Soal Mudah, Sedang & Sukar Blog Koma - Koordinat suatu titik dapat disajikan dalam bentuk koordinat kutub dan koordinat cartesius. Koordinat kutub sangat berguna salah satunya dalam ilmu astronomi. Koordinat kutub juga bisa digunakan untuk membuktikan rumus identitas trigonometri, serta rumus jumlah dan selisih sudut perbandingan trigonometri. Untuk memudahkan mempelajari materi koordinat kutub dan koordinat cartesius , sebaiknya kita pelajari dulu materi "Ukuran Sudut Derajat, Radian, dan Putaran", "Perbandingan Trigonometri pada Segitiga Siku-Siku", "Nilai Perbandingan Trigonometri di Berbagai Kuadran", dan "Perbandingan Trigonometri Sudut-sudut Berelasi". Hubungan koordinat kutub dan koordinat cartesius Koordinat kutub merupakan koordinat yang ada pada cartesius yang terletak pada suatu lingkaran $ x^2 + y^2 = r^2 \, $ , sehingga koordinat kutub ditulis berdasarkan jari-jari lingkaran $r$ dan sudut yang dibentuk terhadap sumbu X positif. Misalkan koordinat cartesius titik A adalah $x,y$, dan koordinat kutub titik A adalah $r, \alpha$, hubungan kedua titik adalah $ x = r \cos \alpha , \, $ dan $ \, y = r \sin \alpha $ . *. Berikut ilustrasi gambarnya $\clubsuit $ Langkah-langkah mengubah koordinat menjadi koordinat cartesius Langsung gunakan hubungan $ x = r \cos \alpha , \, $ dan $ \, y = r \sin \alpha $ $ \clubsuit $ Langkah-langkah mengubah koordinat cartesius menjadi koordinat kutub i. Menentukan jari-jari $r$ dengan pythagoras $ \, r^2 = x^2+y^2 $ ii. Menentukan besar sudut dengan salah satu rumus $ \sin \alpha = \frac{y}{r} \, $ atau $ \cos \alpha = \frac{x}{r}, \, $ atau $ \tan \alpha = \frac{y}{x} $ iii. Untuk kuadrannya, ada empat kemungkinan 1. $ x \, $ positif dan $ y \, $ positif , ada di kuadran I, 2. $ x \, $ negatif dan $ y \, $ positif , ada di kuadran II, 3. $ x \, $ negatif dan $ y \, $ negatif , ada di kuadran III, 4. $ x \, $ positif dan $ y \, $ negatif , ada di kuadran IV Contoh 1. Nyatakan koordinat kutub titik A$8,30^\circ $ ke dalam koordinat cartesius! Penyelesaian *. Diketahui titik $ A r , \alpha = 8,30^\circ $ artinya $ r = 8 \, $ dan $ \alpha = 30^\circ $ *. Menentukan koordinat cartesiusnya $ x = r \cos \alpha = 8 \cos 30^\circ = 8 . \frac{1}{2}\sqrt{3} = 4\sqrt{3} $ $ y = r \sin \alpha = 8 \sin 30^\circ = 8 . \frac{1}{2} = 4 $ Jadi, koordinat cartesiusnya adalah $ A4\sqrt{3}, 4 $ 2. Nyatakan koordinat cartesisu berikut kedalam koordinat kutub a. titik B$ 3, 3\sqrt{3} $ b. titik C$ -\sqrt{3}, 1$ Penyelesaian a. titik B$ 3, 3\sqrt{3} $ artinya $ x = 3 , \, $ dan $ \, y = 3\sqrt{3} $ *. Menentukan jari-jari $r$ $ r = \sqrt{x^2 + y^2 } = \sqrt{3^2 + 3\sqrt{3}^2 } = \sqrt{9 + 27 } = \sqrt{36} = 6 $ *. Menentukan sudut dengan rumus $ \cos \alpha = \frac{x}{r} $ $ \cos \alpha = \frac{x}{r} \rightarrow \cos \alpha = \frac{3}{6} \rightarrow \cos \alpha = \frac{1}{2} \rightarrow \alpha = 60^\circ $ Karena nilai $ x \, $ positif dan $ y \, $ positif, maka titik B ada di kuadran I dengan sudut $ 60^\circ $ Jadi, koordinat kutubnya adalah $ B 6, 60^\circ $ . b. titik C$ -\sqrt{3}, 1$ artinya $ x = -\sqrt{3} , \, $ dan $ \, y = 1 $ *. Menentukan jari-jari $r$ $ r = \sqrt{x^2 + y^2 } = \sqrt{-\sqrt{3}^2 + 1^2 } = \sqrt{3 + 1 } = \sqrt{4} = 2 $ *. Menentukan sudut dengan rumus $ \sin \alpha = \frac{y}{r} $ $ \sin \alpha = \frac{y}{r} \rightarrow \sin \alpha = \frac{1}{2} \rightarrow \alpha = 30^\circ $ Karena nilai $ x \, $ negatif dan $ y \, $ positif, maka titik C ada di kuadran II , Sehingga sudutnya $ 180^\circ - 30^\circ = 150^\circ $ Jadi, koordinat kutubnya adalah $ C 2, 150^\circ $ . Jarak dua titik koordinat kutub Untuk menghitung jarak dua titik koordinat kutub, caranya menggunakan jarak dua titik pada koordinat cartesius. Artinya kita harus mengubah dulu koordinat kutub menjadi koordinat cartesius. Untuk jarak dua titik koordinat cartesius, silahkan baca materi "Jarak Dua Titik dan Titik ke Garis". Menentukan jarak titik A$r_1, \theta _1$ dan titik B$r_2, \theta _2$ , *. Koordinat cartesiusnya adalah $ Ar_1, \theta _1 \rightarrow x_1 = r_1 \cos \theta _1 , \, y_1 = r_1 \sin \theta _1 \rightarrow Ar_1 \cos \theta _1,r_1 \sin \theta _1 $ $ Br_2, \theta _2 \rightarrow x_2 = r_2 \cos \theta _2 , \, y_2 = r_2 \sin \theta _2 \rightarrow Ar_2 \cos \theta _2,r_2 \sin \theta _2 $ *. Jarak titik A$x_1, y_1$ dan titik B$x_2,y_2$ $ \begin{align} \text{jarak } & = \sqrt{x_2-x_1^2 + y_2 - y_1^2 } \\ & = \sqrt{r_2 \cos \theta _2- r_1 \cos \theta _1^2 + r_2 \sin \theta _2 - r_1 \sin \theta _1^2 } \\ & = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \end{align} $ Sehingga jarak titik A$r_1, \theta _1$ dan titik B$r_2, \theta _2$ adalah $ \begin{align} \text{jarak } = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \end{align} $ Contoh 3. Tentukan jarak titik A$3,160^\circ $ dan titik B$4, 100^\circ$! Penyelesaian *. Diketahui titik-titik $ Ar_1, \theta _1 = 3,160^\circ \, $ dan $ Br_2, \theta _2 = 4, 100^\circ $ *. Jarak kedua titik adalah $ \begin{align} \text{jarak } & = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \\ & = \sqrt{ 3^2 + 4^2 - \cos 160^\circ - 100^\circ } \\ & = \sqrt{ 9 + 16 - 24. \cos 60^\circ } \\ & = \sqrt{ 25 - 24. \frac{1}{2} } \\ & = \sqrt{ 25 - 12 } \\ & = \sqrt{ 13 } \end{align} $ Jadi, jarak kedua titik adalah $ \sqrt{ 13 } \, $ satuan panjang. Pembuktian rumus jarak dua titik koordinat kutub *. Gunakan beberapa persamaan identitas trigonometri $ \sin ^2 A + \cos ^2 A = 1 $ Rumus selisih sudut $ \cos A - B = \cos A \cos B + \sin A \sin B $ *. Pembuktian rumusnya $ \begin{align} \text{jarak } & = \sqrt{x_2-x_1^2 + y_2 - y_1^2 } \\ \text{jarak }^2 & = x_2-x_1^2 + y_2 - y_1^2 \\ \text{jarak }^2 & = r_2 \cos \theta _2- r_1 \cos \theta _1^2 + r_2 \sin \theta _2 - r_1 \sin \theta _1^2 \\ \text{jarak }^2 & = r_2 ^2 \cos ^2 \theta _2 - 2r_1r_2 \cos \theta _2 \cos \theta _1 + r_1^2 \cos ^2 \theta _1 \\ & + r_2 ^2 \sin ^2 \theta _2 - 2r_1r_2 \sin \theta _2 \sin \theta _1 + r_1^2 \sin ^2 \theta _1 \\ \text{jarak }^2 & = r_2 ^2 \sin ^2 \theta _2 + \cos ^2 \theta _2 + r_1 ^2 \sin ^2 \theta _1 + \cos ^2 \theta _1 \\ & - 2r_1r_2 \cos \theta _2 \cos \theta _1 + \sin \theta _2 \sin \theta _1 \\ \text{jarak }^2 & = r_2 ^2 . 1 + r_1 ^2 . 1 - 2r_1r_2 \cos \theta _2 - \theta _1 \\ \text{jarak }^2 & = r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 \\ \text{jarak } & = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \end{align} $ Jadi, jaraknya adalah $ \begin{align} \text{jarak } = \sqrt{ r_1^2 + r_2^2 - . \cos \theta _2 - \theta _1 } \end{align} $ y Koordinat KartesiusdanKoordinat Kutub O xKOORDINAT KARTESIUS Koordinat kartesiusadalah koordinat suatu titik yang digambar pada sumbu x dan sumbu y bidang kartesius, terdiri dari absis nilai x dan ordinat nilai y, ditulis Px,y y xp,yp P yp xp O xKOORDINAT KUTUB Koordinat kutubadalah koordiant yang digambar pada sumbu x dan sumbu y, terdiri dari nilai r jarak titik dengan pangkal koordinat dan θ sudut XOP, ditulis Pr, θ. y r,θ P r θ O xKonversi KOORDINAT KARTESIUS ke KOORDINAT KUTUB atau sebaliknya y y Pxp,yp Pr,θ yp r θ xp O O x x Pr,θ y y r θ Koord kutub ke koord kartesius x Koord kartesius ke koord kutub O xy 4,4 P 4 r θ O x 4 Contoh 1 Tentukan koordianat kutub dari P4,4 ! Pembahasan Diketahui P4,4 Ditanya Tentukan koordinat kutubnya! Jawab Dari P4,4 maka Jadi, koordinat kutubnyaContoh 2 T6,300 y 6 300 x O Tentukan koordianat kartesius dari Pembahasan Diketahui Ditanya Tentukan koordinat kutubnya! Jawab Dari maka Jadi, koordinat kartesiusnyaSoal 1 Gambarlah dalam koordinat kertesius dari A10,0, kemudian nyatakan A dalam koordiant kutub! 2 Gambarlah dalam koordinat kutub dari B4,300, kemudian nyatakan B dalam koordiant kartesius!